Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643512

RESUMEN

Plasma cells (PC) are highly specialized cells representing the end stage of B cell differentiation. We have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation model. However, a major challenge exists to decipher the spatiotemporal epigenetic and transcriptional programs that drives the early stages of PC differentiation. We combined single cell (sc) RNA-seq and single cell ATAC-seq to decipher the trajectories involved in PC differentiation. ScRNA-seq experiments revealed a strong heterogeneity of the preplasmablastic and plasmablastic stages. Among genes that were commonly identified using scATAC-seq and scRNA-seq, we identified several transcription factors with significant stage specific potential importance in PC differentiation. Interestingly, differentially accessible peaks characterizing the preplasmablastic stage were enriched in motifs of BATF3, FOS and BATF, belonging to the AP-1 transcription factor family, that may represent key transcriptional nodes involved in PCD. Integration of transcriptomic and epigenetic data at the single cell level revealed that a population of preplasmablasts already undergone epigenetic remodeling related to PC profile together with UPR activation and are committed to differentiate in PC. These results and the supporting data generated with our in vitro PC differentiation model provide a unique resource for the identification of molecular circuits that are crucial for early and mature plasma cell maturation and biological functions. These data thus provide critical insights into epigenetic- and transcriptional-mediated reprogramming events that sustain PC differentiation.

2.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301653

RESUMEN

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Asunto(s)
Linfocitos B , Tonsila Palatina , Humanos , Adulto , Linfocitos B/metabolismo
3.
Front Oncol ; 13: 1271847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125947

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.

5.
EMBO J ; 42(15): e112684, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37303233

RESUMEN

Upon DNA damage, cells activate the DNA damage response (DDR) to coordinate proliferation and DNA repair. Dietary, metabolic, and environmental inputs are emerging as modulators of how DNA surveillance and repair take place. Lipids hold potential to convey these cues, although little is known about how. We observed that lipid droplet (LD) number specifically increased in response to DNA breaks. Using Saccharomyces cerevisiae and cultured human cells, we show that the selective storage of sterols into these LD concomitantly stabilizes phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi, where it binds the DDR kinase ATM. In turn, this titration attenuates the initial nuclear ATM-driven response to DNA breaks, thus allowing processive repair. Furthermore, manipulating this loop impacts the kinetics of DNA damage signaling and repair in a predictable manner. Thus, our findings have major implications for tackling genetic instability pathologies through dietary and pharmacological interventions.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Esteroles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
6.
Front Immunol ; 13: 983181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569948

RESUMEN

Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Melfalán/farmacología , Melfalán/uso terapéutico , Reparación del ADN , Resistencia a Medicamentos
7.
Biol Cell ; 114(8): 211-219, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35524759

RESUMEN

BACKGROUND: Both phospholipid synthesis and the detection of DNA damage are coupled to cell cycle progression, yet whether these two aspects crosstalk to each other remains unassessed. We postulate here that shortage of phospholipids, which negatively affects proliferation, may reduce the need for checkpoint activation in response to DNA damage. RESULTS: To test this hypothesis, we explore here the DNA Damage Response activation in response to seven different genotoxins, in three distinct cell types, and manipulate phospholipid synthesis both pharmacologically and genetically. This allows us to point at the DNA damage response kinase ATR as responsible for the coordination between phospholipid levels and DNA damage sensing. CONCLUSIONS AND SIGNIFICANCE: ATR could combine its ability to sense DNA damage and phospholipid profiles in order to finetune the response to DNA lesions depending on metabolic cues. Further, our analysis reveals the functional significance of this crosstalk to keep genome homeostasis.


Asunto(s)
Fosfolípidos , Proteínas Quinasas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
8.
Theranostics ; 12(4): 1715-1729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198065

RESUMEN

Background: Human multiple myeloma (MM) cell lines (HMCLs) have been widely used to understand the molecular processes that drive MM biology. Epigenetic modifications are involved in MM development, progression, and drug resistance. A comprehensive characterization of the epigenetic landscape of MM would advance our understanding of MM pathophysiology and may attempt to identify new therapeutic targets. Methods: We performed chromatin immunoprecipitation sequencing to analyze histone mark changes (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) on 16 HMCLs. Results: Differential analysis of histone modification profiles highlighted links between histone modifications and cytogenetic abnormalities or recurrent mutations. Using histone modifications associated to enhancer regions, we identified super-enhancers (SE) associated with genes involved in MM biology. We also identified promoters of genes enriched in H3K9me3 and H3K27me3 repressive marks associated to potential tumor suppressor functions. The prognostic value of genes associated with repressive domains and SE was used to build two distinct scores identifying high-risk MM patients in two independent cohorts (CoMMpass cohort; n = 674 and Montpellier cohort; n = 69). Finally, we explored H3K4me3 marks comparing drug-resistant and -sensitive HMCLs to identify regions involved in drug resistance. From these data, we developed epigenetic biomarkers based on the H3K4me3 modification predicting MM cell response to lenalidomide and histone deacetylase inhibitors (HDACi). Conclusions: The epigenetic landscape of MM cells represents a unique resource for future biological studies. Furthermore, risk-scores based on SE and repressive regions together with epigenetic biomarkers of drug response could represent new tools for precision medicine in MM.


Asunto(s)
Histonas , Mieloma Múltiple , Epigénesis Genética/genética , Epigenómica , Código de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética
9.
Clin Epigenetics ; 13(1): 174, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530900

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. RESULTS: Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. CONCLUSIONS: Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/administración & dosificación , Metiltransferasas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Resistencia a Medicamentos/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/farmacología , Humanos , Metiltransferasas/administración & dosificación , Mieloma Múltiple/fisiopatología
10.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299079

RESUMEN

In order to tackle the study of DNA repair pathways, the physical and chemical agents creating DNA damage, the genotoxins, are frequently employed. Despite their utility, their effects are rarely restricted to DNA, and therefore simultaneously harm other cell biomolecules. Methyl methanesulfonate (MMS) is an alkylating agent that acts on DNA by preferentially methylating guanine and adenine bases. It is broadly used both in basic genome stability research and as a model for mechanistic studies to understand how alkylating agents work, such as those used in chemotherapy. Nevertheless, MMS exerts additional actions, such as oxidation and acetylation of proteins. In this work, we introduce the important notion that MMS also triggers a lipid stress that stems from and affects the inner nuclear membrane. The inner nuclear membrane plays an essential role in virtually all genome stability maintenance pathways. Thus, we want to raise awareness that the relative contribution of lipid and genotoxic stresses when using MMS may be difficult to dissect and will matter in the conclusions drawn from those studies.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Daño del ADN , Lípidos/análisis , Metilmetanosulfonato/efectos adversos , Mutágenos/efectos adversos , Membrana Nuclear/patología , Epitelio Pigmentado de la Retina/patología , Reparación del ADN , Células Hep G2 , Humanos , Membrana Nuclear/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos
11.
Leukemia ; 35(5): 1451-1462, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33824465

RESUMEN

Plasma cells (PCs) play an important role in the adaptive immune system through a continuous production of antibodies. We have demonstrated that PC differentiation can be modeled in vitro using complex multistep culture systems reproducing sequential differentiation process occurring in vivo. Here we present a comprehensive, temporal program of gene expression data encompassing human PC differentiation (PCD) using RNA sequencing (RNA-seq). Our results reveal 6374 differentially expressed genes classified into four temporal gene expression patterns. A stringent pathway enrichment analysis of these gene clusters highlights known pathways but also pathways largely unknown in PCD, including the heme biosynthesis and the glutathione conjugation pathways. Additionally, our analysis revealed numerous novel transcriptional networks with significant stage-specific overexpression and potential importance in PCD, including BATF2, BHLHA15/MIST1, EZH2, WHSC1/MMSET, and BLM. We have experimentally validated a potent role for BLM in regulating cell survival and proliferation during human PCD. Taken together, this RNA-seq analysis of PCD temporal stages helped identify coexpressed gene modules with associated up/downregulated transcription regulator genes that could represent major regulatory nodes for human PC maturation. These data constitute a unique resource of human PCD gene expression programs in support of future studies for understanding the underlying mechanisms that control PCD.


Asunto(s)
Diferenciación Celular/genética , Células Plasmáticas/fisiología , ARN/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Glutatión/genética , Hemo/genética , Humanos , Análisis de Secuencia de ARN/métodos , Regulación hacia Arriba/genética
12.
Explor Target Antitumor Ther ; 2(1): 65-106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36046090

RESUMEN

Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.

13.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126754

RESUMEN

Plasma cells (PC) are the main effectors of adaptive immunity, responsible for producing antibodies to defend the body against pathogens. They are the result of a complex highly regulated cell differentiation process, taking place in several anatomical locations and involving unique genetic events. Pathologically, PC can undergo tumorigenesis and cause a group of diseases known as plasma cell dyscrasias, including multiple myeloma (MM). MM is a severe disease with poor prognosis that is characterized by the accumulation of malignant PC within the bone marrow, as well as high clinical and molecular heterogeneity. MM patients frequently develop resistance to treatment, leading to relapse. Polycomb group (PcG) proteins are epigenetic regulators involved in cell fate and carcinogenesis. The emerging roles of PcG in PC differentiation and myelomagenesis position them as potential therapeutic targets in MM. Here, we focus on the roles of PcG proteins in normal and malignant plasma cells, as well as their therapeutic implications.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Neoplasias/patología , Células Plasmáticas/patología , Proteínas del Grupo Polycomb/metabolismo , Animales , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
14.
Genes (Basel) ; 11(2)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093406

RESUMEN

Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.


Asunto(s)
Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica/genética , Segregación Cromosómica/genética , Cromosomas/genética , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Fase S/genética , Huso Acromático/genética
15.
Cell Rep ; 29(12): 4159-4171.e6, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851940

RESUMEN

The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes. Phylogenetic analysis of the vasohibin family revealed that regulatory diversification of VASH-mediated tubulin detyrosination coincided with early vertebrate evolution. Thus, as a model organism for functional analysis, we used Trypanosoma brucei (Tb), an evolutionarily early-branched eukaryote that possesses a single VASH and encodes a terminal tyrosine on both α- and ß-tubulin tails, both subject to removal. Remarkably, although detyrosination levels are high in the flagellum, TbVASH knockout parasites did not present any noticeable flagellar abnormalities. In contrast, we observed reduced proliferation associated with profound morphological and mitotic defects, underscoring the importance of tubulin detyrosination in cell division.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Evolución Biológica , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Trypanosoma brucei brucei/metabolismo , Tirosina/metabolismo , Proteínas Angiogénicas/química , Proteínas Angiogénicas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Flagelos/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Mitosis , Filogenia , Conformación Proteica , Procesamiento Proteico-Postraduccional , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Tirosina/química , Tirosina/genética
16.
Sci Rep ; 8(1): 11871, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089874

RESUMEN

Cdc14 enzymes compose a family of highly conserved phosphatases that are present in a wide range of organisms, including yeast and humans, and that preferentially reverse the phosphorylation of Cyclin-Dependent Kinase (Cdk) substrates. The budding yeast Cdc14 orthologue has essential functions in the control of late mitosis and cytokinesis. In mammals, however, the two Cdc14 homologues, Cdc14A and Cdc14B, do not play a prominent role in controlling late mitotic events, suggesting that some Cdc14 functions are not conserved across species. Moreover, in yeast, Cdc14 is regulated by changes in its subcellular location and by phosphorylation events. In contrast, little is known about the regulation of human Cdc14 phosphatases. Here, we have studied how the human Cdc14A orthologue is regulated during the cell cycle. We found that Cdc14A is phosphorylated on Ser411, Ser453 and Ser549 by Cdk1 early in mitosis and becomes dephosphorylated during late mitotic stages. Interestingly, in vivo and in vitro experiments revealed that, unlike in yeast, Cdk1-mediated phosphorylation of human Cdc14A did not control its catalytic activity but likely modulated its interaction with other proteins in early mitosis. These findings point to differences in Cdk1-mediated mechanisms of regulation between human and yeast Cdc14 orthologues.


Asunto(s)
Aminoácidos/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación/fisiología , Fenómenos Bioquímicos/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Citocinesis/fisiología , Proteínas Fúngicas/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis/fisiología , Proteínas Tirosina Fosfatasas , Levaduras/metabolismo
17.
J Cell Biol ; 216(12): 4007-4026, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29030393

RESUMEN

Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes.


Asunto(s)
Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Transcripción Genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestructura , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Reporteros , Células HEK293 , Células HeLa , Humanos , Mitosis , Oligopéptidos/genética , Oligopéptidos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfoproteínas/metabolismo , Unión Proteica , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
18.
Mol Biol Cell ; 23(23): 4515-25, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23051732

RESUMEN

The activity of Cdk1-cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1-cyclin B1 activity through Wee1 dephosphorylation.


Asunto(s)
Proteínas de Ciclo Celular , Mitosis/genética , Proteínas Nucleares , Monoéster Fosfórico Hidrolasas , Fosforilación , Proteínas Tirosina Quinasas , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Fosfatasas cdc25/metabolismo , Quinasa Tipo Polo 1
19.
Cell Cycle ; 10(3): 387-91, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21233601

RESUMEN

Cdc14 belongs to a dual-specificity phosphatase family highly conserved through evolution that preferentially reverses CDK (Cyclin dependent kinases) -dependent phosphorylation events. In the yeast Saccharomyces cerevisiae, Cdc14 is an essential regulator of late mitotic events and exit from mitosis by counteracting CDK activity at the end of mitosis. However, many studies have shown that Cdc14 is dispensable for exiting mitosis in all other model systems analyzed. In fission yeast, the Cdc14 homologue Flp1/Clp1 regulates the stability of the mitotic inducer Cdc25 at the end of mitosis to ensure Cdk1 inactivation before cytokinesis. We have recently reported that human Cdc14A, the Cdc14 isoform located at the centrosomes during interphase, down-regulates Cdc25 activity at the G2/M transition to prevent premature activation of Cdk1-Cyclin B1 complexes and untimely entry into mitosis. Here we speculate about new molecular mechanisms for Cdc14A and discuss the current evidence suggesting that Cdc14 phosphatase plays a role in cell cycle control in higher eukaryotes.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , División Celular , Fase G2 , Genes cdc , Monoéster Fosfórico Hidrolasas/fisiología , Centrosoma/metabolismo , Humanos , Modelos Genéticos , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Proteínas Tirosina Fosfatasas
20.
J Biol Chem ; 285(52): 40544-53, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20956543

RESUMEN

The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis.


Asunto(s)
Fase G2/fisiología , Mitosis/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatasas cdc25/metabolismo , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular , Activación Enzimática/fisiología , Humanos , Monoéster Fosfórico Hidrolasas/genética , Proteínas Tirosina Fosfatasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatasas cdc25/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...